Publications at the Riemann Center

N=4 supersymmetric mechanics on curved spaces

authored by
Nikolay Kozyrev, Sergey Krivonos, Olaf Lechtenfeld, Armen Nersessian, Anton Sutulin
Abstract

We present N=4 supersymmetric mechanics on n-dimensional Riemannian manifolds constructed within the Hamiltonian approach. The structure functions entering the supercharges and the Hamiltonian obey modified covariant constancy equations as well as modified Witten-Dijkgraaf-Verlinde-Verlinde equations specified by the presence of the manifold's curvature tensor. Solutions of original Witten-Dijkgraaf-Verlinde-Verlinde equations and related prepotentials defining N=4 superconformal mechanics in flat space can be lifted to so(n)-invariant Riemannian manifolds. For the Hamiltonian this lift generates an additional potential term which, on spheres and (two-sheeted) hyperboloids, becomes a Higgs-oscillator potential. In particular, the sum of n copies of one-dimensional conformal mechanics results in a specific superintegrable deformation of the Higgs oscillator.

Organisation(s)
Institut für Theoretische Physik
Riemann Center for Geometry and Physics
External Organisation(s)
Joint Institute for Nuclear Research (JINR)
Yerevan Physics Institute - Armenian Academy of Sciences
Type
Artikel
Journal
Physical Review D
Volume
97
ISSN
2470-0010
Publication date
15.04.2018
Publication status
Veröffentlicht
Peer reviewed
Yes
ASJC Scopus Sachgebiete
Physik und Astronomie (sonstige)
Electronic version(s)
https://doi.org/10.48550/arXiv.1711.08734 (Access: Offen)
https://doi.org/10.1103/PhysRevD.97.085015 (Access: Offen)
https://doi.org/10.15488/3799 (Access: Offen)