Publications at the Riemann Center

Counting imaginary quadratic points via universal torsors

authored by
Ulrich Derenthal, Christopher Frei
Abstract

A conjecture of Manin predicts the distribution of rational points on Fano varieties. We provide a framework for proofs of Manin's conjecture for del Pezzo surfaces over imaginary quadratic fields, using universal torsors. Some of our tools are formulated over arbitrary number fields. As an application, we prove Manin's conjecture over imaginary quadratic fields K for the quartic del Pezzo surface S of singularity type A3 with five lines given in double-struck PK4 by the equations x0x1 - x2x3 = x0x3 + x1x3 + x2x4 = 0.

Organisation(s)
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
Riemann Center for Geometry and Physics
Type
Artikel
Journal
Compositio mathematica
Volume
150
Pages
1631-1678
No. of pages
48
ISSN
0010-437X
Publication date
02.10.2014
Publication status
Veröffentlicht
Peer reviewed
Yes
ASJC Scopus Sachgebiete
Algebra und Zahlentheorie
Electronic version(s)
https://doi.org/10.1112/S0010437X13007902 (Access: Offen)