Publications at the Riemann Center
Counting imaginary quadratic points via universal torsors
- authored by
- Ulrich Derenthal, Christopher Frei
- Abstract
A conjecture of Manin predicts the distribution of rational points on Fano varieties. We provide a framework for proofs of Manin's conjecture for del Pezzo surfaces over imaginary quadratic fields, using universal torsors. Some of our tools are formulated over arbitrary number fields. As an application, we prove Manin's conjecture over imaginary quadratic fields K for the quartic del Pezzo surface S of singularity type A3 with five lines given in double-struck PK4 by the equations x0x1 - x2x3 = x0x3 + x1x3 + x2x4 = 0.
- Organisation(s)
-
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
Riemann Center for Geometry and Physics
- Type
- Artikel
- Journal
- Compositio mathematica
- Volume
- 150
- Pages
- 1631-1678
- No. of pages
- 48
- ISSN
- 0010-437X
- Publication date
- 02.10.2014
- Publication status
- Veröffentlicht
- Peer reviewed
- Yes
- ASJC Scopus Sachgebiete
- Algebra und Zahlentheorie
- Electronic version(s)
-
https://doi.org/10.1112/S0010437X13007902 (Access:
Offen)