Publications at the Riemann Center
The geometry of degenerations of Hilbert schemes of points
- authored by
- Martin G. Gulbrandsen, Lars H. Halle, Klaus Hulek, Ziyu Zhang
- Abstract
Given a strict simple degeneration f : X → C the first three authors previously constructed a degeneration I
X/C
n → C of the relative degree n Hilbert scheme of 0-dimensional subschemes. In this paper we investigate the geometry of this degeneration, in particular when the fibre dimension of f is at most 2. In this case we show that I
X/C
n → C is a dlt model. This is even a good minimal dlt model if f : X → C has this property. We compute the dual complex of the central fibre (I
X/C
n )
0 and relate this to the essential skeleton of the generic fibre. For a type II degeneration of K3 surfaces we show that the stack I
X/C
n → C carries a nowhere degenerate relative logarithmic 2-form. Finally we discuss the relationship of our degeneration with the constructions of Nagai.
- Organisation(s)
-
Institut für Algebraische Geometrie
Riemann Center for Geometry and Physics
- External Organisation(s)
-
University of Stavanger
Københavns Universitet
- Type
- Artikel
- Journal
- J ALGEBRAIC GEOM
- Volume
- 30
- Pages
- 1-56
- No. of pages
- 56
- ISSN
- 1056-3911
- Publication date
- 2021
- Publication status
- Veröffentlicht
- Peer reviewed
- Yes
- ASJC Scopus Sachgebiete
- Geometrie und Topologie, Algebra und Zahlentheorie
- Electronic version(s)
-
https://arxiv.org/abs/1802.00622 (Access:
Offen)
https://doi.org/10.1090/jag/765 (Access: Geschlossen)