Publications at the Riemann Center

Hidden symmetries of deformed oscillators

authored by
Sergey Krivonos, Olaf Lechtenfeld, Alexander Sorin
Abstract

We associate with each simple Lie algebra a system of second-order differential equations invariant under a non-compact real form of the corresponding Lie group. In the limit of a contraction to a Schrödinger algebra, these equations reduce to a system of ordinary harmonic oscillators. We provide two clarifying examples of such deformed oscillators: one system invariant under SO(2,3) transformations, and another system featuring G2(2) symmetry. The construction of invariant actions requires adding semi-dynamical degrees of freedom; we illustrate the algorithm with the two examples mentioned.

Organisation(s)
Institut für Theoretische Physik
Riemann Center for Geometry and Physics
External Organisation(s)
Joint Institute for Nuclear Research (JINR)
National Research Nuclear University (MEPhI)
Dubna International University
Type
Artikel
Journal
Nuclear Physics B
Volume
924
Pages
33-46
No. of pages
14
ISSN
0550-3213
Publication date
11.2017
Publication status
Veröffentlicht
Peer reviewed
Yes
ASJC Scopus Sachgebiete
Kern- und Hochenergiephysik
Electronic version(s)
https://doi.org/10.1016/j.nuclphysb.2017.09.003 (Access: Offen)