Publications at the Riemann Center
G-torsors and universal torsors over nonsplit del Pezzo surfaces
- authored by
- Ulrich Derenthal, Norbert Hoffmann
- Abstract
Let S be a smooth del Pezzo surface that is defined over a field K and splits over a Galois extension L. Let G be either the split reductive group given by the root system of $S_L$ in Pic $S_L$, or a form of it containing the N\'eron--Severi torus. Let $\mathcal{G}$ be the G-torsor over $S_L$ obtained by extension of structure group from a universal torsor $\mathcal{T}$ over $S_L$. We prove that $\mathcal{G}$ does not descend to S unless $\mathcal{T}$ does. This is in contrast to a result of Friedman and Morgan that such $\mathcal{G}$ always descend to singular del Pezzo surfaces over $\mathbb{C}$ from their desingularizations.
- Organisation(s)
-
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
Riemann Center for Geometry and Physics
- External Organisation(s)
-
Mary Immaculate College
- Type
- Preprint
- No. of pages
- 9
- Publication date
- 16.09.2021
- Publication status
- Elektronisch veröffentlicht (E-Pub)
- Electronic version(s)
-
https://arxiv.org/abs/2109.08137 (Access:
Offen)