Publications at the Riemann Center
Sigma-model limit of Yang-Mills instantons in higher dimensions
- authored by
- Andreas Deser, Olaf Lechtenfeld, Alexander D. Popov
- Abstract
We consider the Hermitian Yang-Mills (instanton) equations for connections on vector bundles over a 2n-dimensional Kähler manifold X which is a product Y×. Z of p- and q-dimensional Riemannian manifold Y and Z with p+. q=2. n. We show that in the adiabatic limit, when the metric in the Z direction is scaled down, the gauge instanton equations on Y×. Z become sigma-model instanton equations for maps from Y to the moduli space M (target space) of gauge instantons on Z if q≥. 4. For q<. 4 we get maps from Y to the moduli space M of flat connections on Z. Thus, the Yang-Mills instantons on Y×. Z converge to sigma-model instantons on Y while Z shrinks to a point. Put differently, for small volume of Z, sigma-model instantons on Y with target space M approximate Yang-Mills instantons on Y×. Z.
- Organisation(s)
-
Institut für Theoretische Physik
Riemann Center for Geometry and Physics
- Type
- Artikel
- Journal
- Nuclear Physics B
- Volume
- 894
- Pages
- 361-373
- No. of pages
- 13
- ISSN
- 0550-3213
- Publication date
- 2015
- Publication status
- Veröffentlicht
- Peer reviewed
- Yes
- ASJC Scopus Sachgebiete
- Kern- und Hochenergiephysik
- Electronic version(s)
-
https://doi.org/10.1016/j.nuclphysb.2015.03.009 (Access:
Offen)