Publications at the Riemann Center
Singularities of normal quartic surfaces II (char=2)
- authored by
- Fabrizio Catanese, Matthias Schütt
- Abstract
We show, in this second part, that the maximal number of singular points of a quartic surface \(X \subset \mathbb{P}^3_K\) defined over an algebraically closed field \(K\) of characteristic \(2\) is at most \(14\), and that, if we have \(14\) singularities, these are nodes and moreover the minimal resolution of \(X\) is a supersingular K3 surface. We produce an irreducible component, of dimension \(24\), of the variety of quartics with \(14\) nodes. We also exhibit easy examples of quartics with \(7\) \(A_3\)-singularities.
- Organisation(s)
-
Institut für Algebraische Geometrie
Riemann Center for Geometry and Physics
- External Organisation(s)
-
Universität Bayreuth
- Type
- Artikel
- Journal
- Pure and Applied Mathematics Quarterly
- Volume
- 18
- Pages
- 1379-1420
- No. of pages
- 42
- ISSN
- 1558-8599
- Publication date
- 25.10.2022
- Publication status
- Veröffentlicht
- Peer reviewed
- Yes
- ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Electronic version(s)
-
https://arxiv.org/abs/2110.03078 (Access:
Offen)
https://doi.org/10.4310/PAMQ.2022.v18.n4.a5 (Access: Geschlossen)