Publications at the Riemann Center
Zariski K3 surfaces
- authored by
- Toshiyuki Katsura, Matthias Schütt
- Abstract
We construct Zariski K3 surfaces of Artin invariant 1, 2 and 3 in many characteristics. In particular, we prove that any supersingular Kummer surface is Zariski if p ≡ 1 mod 12. Our methods combine different approaches such as quotients by the group scheme α
p, Kummer surfaces, and automorphisms of hyperelliptic curves.
- Organisation(s)
-
Institut für Algebraische Geometrie
Riemann Center for Geometry and Physics
- External Organisation(s)
-
Hosei University
- Type
- Artikel
- Journal
- Revista matemática iberoamericana
- Volume
- 36
- Pages
- 869–894
- No. of pages
- 26
- ISSN
- 0213-2230
- Publication date
- 2020
- Publication status
- Veröffentlicht
- Peer reviewed
- Yes
- ASJC Scopus Sachgebiete
- Allgemeine Mathematik
- Electronic version(s)
-
https://doi.org/10.48550/arXiv.1710.08661 (Access:
Offen)
https://doi.org/10.4171/rmi/1152 (Access: Geschlossen)