Publications at the Riemann Center

Strong approximation and descent

authored by
Ulrich Derenthal, Dasheng Wei
Abstract

We introduce descent methods to the study of strong approximation on algebraic varieties. We apply them to two classes of varieties defined by P(t) = NK/κ(z): firstly for quartic extensions of number fields K/κ and quadratic polynomials P(t) in one variable, and secondly for κ = ℚ, an arbitrary number field K and P(t) a product of linear polynomials over ℚ in at least two variables. Finally, we illustrate that a certain unboundedness condition at archimedean places is necessary for strong approximation.

Organisation(s)
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
Riemann Center for Geometry and Physics
External Organisation(s)
Chinese Academy of Sciences (CAS)
Type
Artikel
Journal
Journal fur die Reine und Angewandte Mathematik
Volume
2017
Pages
235-258
No. of pages
24
ISSN
0075-4102
Publication date
10.2017
Publication status
Veröffentlicht
Peer reviewed
Yes
ASJC Scopus Sachgebiete
Mathematik (insg.), Angewandte Mathematik
Electronic version(s)
https://doi.org/10.1515/crelle-2014-0149 (Access: Unbekannt)