Publications at the Riemann Center
Strong approximation and descent
- authored by
- Ulrich Derenthal, Dasheng Wei
- Abstract
We introduce descent methods to the study of strong approximation on algebraic varieties. We apply them to two classes of varieties defined by P(t) = NK/κ(z): firstly for quartic extensions of number fields K/κ and quadratic polynomials P(t) in one variable, and secondly for κ = ℚ, an arbitrary number field K and P(t) a product of linear polynomials over ℚ in at least two variables. Finally, we illustrate that a certain unboundedness condition at archimedean places is necessary for strong approximation.
- Organisation(s)
-
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
Riemann Center for Geometry and Physics
- External Organisation(s)
-
Chinese Academy of Sciences (CAS)
- Type
- Artikel
- Journal
- Journal fur die Reine und Angewandte Mathematik
- Volume
- 2017
- Pages
- 235-258
- No. of pages
- 24
- ISSN
- 0075-4102
- Publication date
- 10.2017
- Publication status
- Veröffentlicht
- Peer reviewed
- Yes
- ASJC Scopus Sachgebiete
- Mathematik (insg.), Angewandte Mathematik
- Electronic version(s)
-
https://doi.org/10.1515/crelle-2014-0149 (Access:
Unbekannt)