Publications at the Riemann Center
Enriques Involutions and Brauer Classes
- authored by
- A. N. Skorobogatov, D. Valloni
- Abstract
We prove that every element of order 2 in the Brauer group of a complex Kummer surface X descends to an Enriques quotient of X. In generic cases, this gives a bijection between the set of Enriques quotients of X up to isomorphism and the set of Brauer classes of X of order 2. For some K3 surfaces of Picard rank we prove that the fibers of above the nonzero points have the same cardinality.
- Organisation(s)
-
Riemann Center for Geometry and Physics
- External Organisation(s)
-
Imperial College London
Russian Academy of Sciences (RAS)
- Type
- Artikel
- Journal
- Nagoya mathematical journal
- Volume
- 251
- Pages
- 606-621
- No. of pages
- 16
- ISSN
- 0027-7630
- Publication date
- 09.2023
- Publication status
- Veröffentlicht
- Peer reviewed
- Yes
- ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Electronic version(s)
-
https://doi.org/10.48550/arXiv.2202.08030 (Access:
Offen)
https://doi.org/10.1017/nmj.2022.43 (Access: Geschlossen)