Publications at the Riemann Center

Minimal realization of ℓ-conformal Galilei algebra, Pais-Uhlenbeck oscillators and their deformation

authored by
Sergey Krivonos, Olaf Lechtenfeld, Alexander Sorin
Abstract

We present the minimal realization of the ℓ-conformal Galilei group in 2+1 dimensions on a single complex field. The simplest Lagrangians yield the complex PaisUhlenbeck oscillator equations. We introduce a minimal deformation of the ℓ = 1/2 conformal Galilei (a.k.a. Schrödinger) algebra and construct the corresponding invariant actions. Based on a new realization of the d = 1 conformal group, we find a massive extension of the near-horizon Kerr-dS/AdS metric.

Organisation(s)
Institut für Theoretische Physik
Riemann Center for Geometry and Physics
External Organisation(s)
Joint Institute for Nuclear Research (JINR)
National Research Nuclear University (MEPhI)
Dubna International University
Type
Artikel
Journal
Journal of high energy physics
Volume
2016
ISSN
1126-6708
Publication date
01.10.2016
Publication status
Veröffentlicht
Peer reviewed
Yes
ASJC Scopus Sachgebiete
Kern- und Hochenergiephysik
Electronic version(s)
https://doi.org/10.1007/JHEP10(2016)078 (Access: Offen)